Protein farnesyltransferase from Trypanosoma brucei. A heterodimer of 61- and 65-kda subunits as a new target for antiparasite therapeutics.
نویسندگان
چکیده
We have previously shown that protein prenylation occurs in the Trypanosomatids Trypanosoma brucei (T. brucei), Trypanosoma cruzi, and Leishmania mexicana and that protein farnesyltransferase (PFT) activity can be detected in cytosolic extracts of insect (procyclic) form T. brucei. A PFT that transfers the farnesyl group from farnesyl pyrophosphate to a cysteine that is 4 residues upstream of the C terminus of the Ras GTP-binding protein RAS1-CVIM has now been purified 60,000-fold to near homogeneity from procyclic T. brucei. By screening a mixture of hexapeptides SSCALX (X is 20 different amino acids), it was found that SSCALM binds to T. brucei PFT with sub-micromolar affinity, and affinity chromatography using this peptide was a key step in the purification of this enzyme. On SDS-polyacrylamide gel electrophoresis, the enzyme migrates as a pair of bands with apparent molecular masses of 61 and 65 kDa, and thus its subunits are approximately 30% larger than those of the mammalian homolog. The 61-kDa band was identified as the putative beta-subunit by photoaffinity labeling with a 32P-labeled analog of farnesyl pyrophosphate. Mimetics of the C-terminal tetrapeptide of prenyl acceptors have been previously shown to inhibit mammalian PFT, and these compounds also inhibit T. brucei PFT with affinities in the nanomolar to micromolar range, although the structure-activity relationship is very different for parasite versus mammalian enzyme. Unlike mammalian cells, the growth of bloodstream T. brucei is completely inhibited by low micromolar concentrations of two of the PFT inhibitors, and these compounds also block protein farnesylation in cultured parasites. These compounds also potently block the growth of the intracellular (amastigote) form of T. cruzi grown in fibroblast host cells. The results suggest that protein farnesylation is a target for the development of anti-trypanosomatid chemotherapeutics.
منابع مشابه
Cloning, heterologous expression, and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei.
Protein prenylation occurs in the protozoan that causes African sleeping sickness (Trypanosoma brucei), and the protein farnesyltransferase appears to be a good target for developing drugs. We have cloned the alpha- and beta-subunits of T. brucei protein farnesyltransferase (TB-PFT) using nucleic acid probes designed from partial amino acid sequences obtained from the enzyme purified from insec...
متن کاملDesign and synthesis of peptidomimetic protein farnesyltransferase inhibitors as anti-Trypanosoma brucei agents.
On the basis of the structure of the CVIM tetrapeptide substrate of mammalian protein farnesyltransferase, a series of imidazole-containing peptidomimetics was designed and synthesized, and their inhibition activity against Trypanosoma brucei protein farnesyltransferase (TbPFT) was evaluated. Peptidomimetics where the 5-position of the imidazole ring was linked to the hydrophobic scaffold showe...
متن کاملCloning, heterologous expression, and substrate specificities of protein farnesyltransferases from Trypanosoma cruzi and Leishmania major.
Chagas disease and leishmaniasis are tropical diseases caused by the protozoan parasites, Trypanosoma cruzi and Leishmania species, respectively. Protein farnesyltransferase (PFT) is being investigated as a target for anti-trypanosomatid agents because inhibitors of this enzyme are highly toxic to these parasites compared to mammalian cells. Here, we report the cloning of the alpha- and beta-su...
متن کاملIsothiazole dioxides: synthesis and inhibition of Trypanosoma brucei protein farnesyltransferase.
A series of isothiazole dioxides was synthesized and evaluated as inhibitors of protein farnesyltransferase from the parasite that causes African sleeping sickness (Trypanosoma brucei). The most potent compound in the series inhibited the parasite enzyme with an IC(50) of 2 microM and blocked the growth of the bloodstream parasite in vitro with an ED(50) of 10 microM. The same compound inhibite...
متن کاملCross-species activation of trypanosome S-adenosylmethionine decarboxylase by the regulatory subunit prozyme.
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease (American trypanosomiasis), a neglected disease of Central and South America. Polyamines are small organic cations that are required for cell growth and their biosynthesis has been the target of drug discovery efforts in both T. cruzi and the related Trypanosoma brucei parasites. Here we show that, as previously d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 41 شماره
صفحات -
تاریخ انتشار 1998